skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Mott, Taylor M"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Regulation of ion channel expression on the plasma membrane is a major determinant of neuronal excitability, and identifying the underlying mechanisms of this expression is critical to our understanding of neurons. Here, we present two orthogonal strategies to label extracellular sites of the ion channel TRPV1 that minimally perturb its function. We use the amber codon suppression technique to introduce a non-canonical amino acid (ncAA) with tetrazine click chemistry, compatible with a trans-cyclooctene coupled fluorescent dye. Additionally, by inserting the circularly permutated HaloTag (cpHaloTag) in an extracellular loop of TRPV1, we can incorporate a fluorescent dye of our choosing. Optimization of ncAA insertion sites was accomplished by screening residue positions between the S1 and S2 transmembrane domains with elevated missense variants in the human population. We identified T468 as a rapid labeling site (∼5 min) based on functional and biochemical assays in HEK293T/17 cells. Through adapting linker lengths and backbone placement of cpHaloTag on the extracellular side of TRPV1, we generated a fully functional channel construct, TRPV1exCellHalo, with intact wild-type gating properties. We used TRPV1exCellHalo in a single molecule experiment to track TRPV1 on the cell surface and validate studies that show decreased mobility of the channel upon activation. The application of these extracellular label TRPV1 (exCellTRPV1) constructs to track surface localization of the channel will shed significant light on the mechanisms regulating its expression and provide a general scheme to introduce similar modifications to other cell surface receptors. 
    more » « less